Curvas Paramétricas

Luis Alberto D'Afonseca

Cálculo de Funções de Várias Variáveis – I

Conteúdo

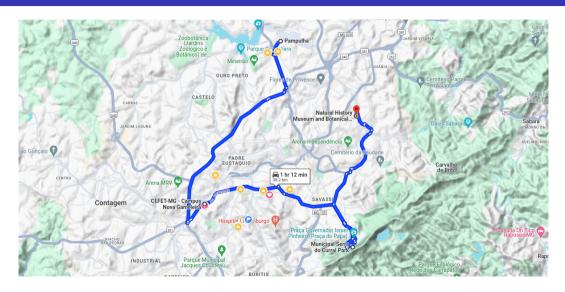
Introdução

Curvas Paramétricas

Exemplos

Lista Mínima

Trajetória



Curvas Paramétricas

Função de \mathbb{R} em \mathbb{R}^n

$$\gamma(t) = (x, y) = (f(t), g(t))$$

ou

$$\gamma(t) = \left[\begin{array}{c} x \\ y \end{array} \right] = \left[\begin{array}{c} f(t) \\ g(t) \end{array} \right]$$

ou

$$\gamma(t) = x\mathbf{i} + y\mathbf{j} = f(t)\mathbf{i} + g(t)\mathbf{j}$$

Podemos pensar na variável como o tempo e a curva como uma trajetória

Conteúdo

Introdução

Curvas Paramétricas

Exemplos

Lista Mínima

Definição em 2D

Se x e y são dados como funções

$$x = f(t)$$
 $y = g(t)$

sobre um intervalo I de valores de t, então o conjunto de pontos

$$(x, y) = (f(t), g(t))$$

forma uma curva paramétrica em \mathbb{R}^2

Definição em 3D

Se *x*, *y* e *z* são dados como funções

$$x = f(t)$$
 $y = g(t)$ $z = h(t)$

sobre um intervalo I de valores de t, então o conjunto de pontos

$$(x, y, z) = (f(t), g(t), h(t))$$

forma uma curva paramétrica em \mathbb{R}^3

Definição Geral

Se x_i , i = 1, ..., n são as coordenadas no espaço \mathbb{R}^n

$$x_i = f_i(t)$$

sobre um intervalo I de valores de t, então o conjunto de pontos

$$(x_1, x_2, \ldots, x_n) = (f_1(t), f_2(t), \ldots, f_n(t))$$

forma uma curva paramétrica em \mathbb{R}^n

Nomenclatura

As equações são as equações paramétricas da curva

- *t* é o parâmetro da curva
- *I* intervalo do parâmetro

Se I é um intervalo fechado $a \le t \le b$

$$(f(a), g(a))$$
 é o ponto inicial $(f(b), g(b))$ é o ponto final

9/40

Notações

$$(x, y) = (x(t), y(t)) = (f(t), g(t))$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} f(t) \\ g(t) \end{pmatrix}$$

$$(x_1,x_2,\ldots,x_n)=\big(f_1(t),f_2(t),\ldots,f_n(t)\big)$$

Conteúdo

Introdução

Curvas Paramétricas

Exemplos

Lista Mínima

Trace a curva definida pelas equações paramétricas

$$x = t^2$$
 $y = t + 1$ $-\infty < t < \infty$

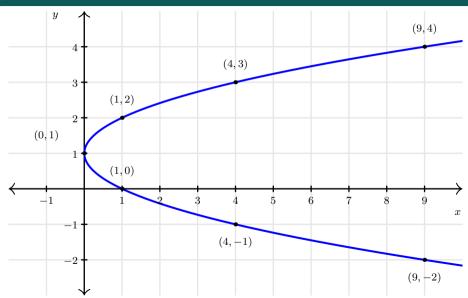
Note que

y varia com t e x varia com t^2

então a curva é uma parábola

Calculando alguns pontos

t	x	У
-3	9	-2
-2	4	-1
-1	1	0
0	0	1
1	1	2
2	4	3
3	9	4



Identifique geometricamente a curva do Exemplo 1 eliminando o parâmetro t

$$x = t^2$$
 $y = t + 1$ $-\infty < t < \infty$

Transformar a curva paramétrica em t em uma equação envolvendo x e y

Eliminar t em

$$x = t^2$$

$$y = t + 1$$

$$y = t + 1$$

$$t = y - 1$$

$$x=t^2$$

$$= (y-1)^2$$

$$= y^2 - 2y + 1$$

Determine se os pontos (2,3) e (4,-1) pertencem à curva paramétrica

$$x = t^2$$
 $y = t + 1$ $-\infty < t < \infty$

Testando o ponto (2,3)

$$y = 3$$

$$t + 1 = 3$$

$$t = 3 - 1 = 2$$

$$x = t^2 = 2^2 = 4 \neq 2$$

O ponto não pertence a curva

Testando o ponto (4, -1)

$$y = -1$$

$$t + 1 = -1$$

$$t = -1 - 1 = -2$$

$$x = t^2 = (-2)^2 = 4$$

O ponto pertence a curva

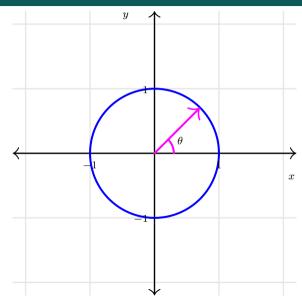
Represente graficamente a curva paramétrica

$$x = \cos(t)$$
 $y = \sin(t)$ $0 \le t \le 2\pi$

Sabemos que essa é a parametrização do circulo trigonométrico

Calculando alguns pontos

t	x	У
0	1	0
$\frac{\pi}{2}$	0	1
π	-1	0
$\frac{3\pi}{2}$	0	-1
2π	1	0



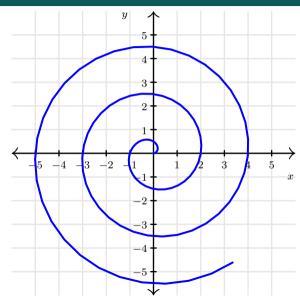
Esboce a trajetória definida pela curva paramétrica

$$\begin{cases} x = t \cos(t\pi) \\ y = t \sin(t\pi) \end{cases}$$

$$0 \le t$$

Similar a parametrização do circulo trigonométrico

t	$t\pi$	$\cos(t\pi)$	$\operatorname{sen}(t\pi)$	х	у
0	0	1	0	0	0
$\frac{1}{2}$	$rac{\pi}{2}$	0	1	0	$\frac{1}{2}$
1	π	-1	0	-1	0
$\frac{3}{2}$	$\frac{3\pi}{2}$	0	-1	0	$-\frac{3}{2}$
2	2π	1	0	2	0



A posição de uma partícula se movendo no plano xy é dada por

$$x = \sqrt{t}$$
 $y = t$ $t \ge 0$

Esboce sua trajetória

Eliminando t em

$$x = \sqrt{t}$$

$$y = t$$

temos

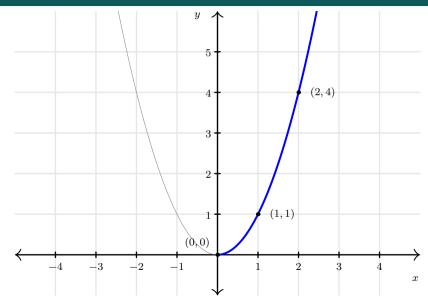
$$x = \sqrt{t} = \sqrt{y}$$

Elevando os dois lados ao quadrado

$$x = \sqrt{y}$$

$$x^{2} = (\sqrt{y})^{2} = |y| = y$$

$$y = x^{2}$$



Construa uma curva paramétrica cuja trajetória seja uma circunferência de raio 2 centrada em (3,4)

Sabemos que

$$x = \cos(t)$$

$$y = \operatorname{sen}(t)$$

$$0 \le t < 2\pi$$

parametriza uma circunferência de raio 1 centrada em (0,0)

Para que o raio seja 2 multiplicamos as funções por 2

$$x = 2\cos(t)$$

$$y = 2\operatorname{sen}(t)$$

$$0 \le t < 2\pi$$

Para mover o centro para (3,4) somamos esses valores

$$x = 2\cos(t) + 3$$

$$y = 2\operatorname{sen}(t) + 4$$

$$0 \leq t < 2\pi$$

Encontre uma parametrização para o círculo definido pela equação

$$(x-3)^2 + (y+1)^2 = 4$$

Círculo de raio 2 centrado no ponto (3, -1)

Parametrização do círculo unitário centrado na origem

$$x = \cos(\theta)$$

$$y = \operatorname{sen}(\theta)$$

$$\theta \in [0,2\pi)$$

Parametrização do círculo de raio 2 centrado na origem

$$x = 2\cos(\theta)$$

$$y = 2 \operatorname{sen}(\theta)$$

$$\theta \in [0,2\pi)$$

Parametrização do círculo de raio 2 centrado no ponto (3,-1)

$$x = 2\cos(\theta) + 3$$

$$y = 2\operatorname{sen}(\theta) - 1$$

$$\theta \in [0,2\pi)$$

Encontre uma parametrização para o movimento de uma partícula que começa no ponto (-2,0) e traça a metade superior do círculo $x^2+y^2=4$

Metade superior do círculo de raio 2 centrado na origem

Parametrização do círculo unitário centrado na origem

$$x = \cos(\theta)$$

$$y = \operatorname{sen}(\theta)$$

$$\theta \in [0,2\pi)$$

Parametrização do círculo de raio 2 centrado na origem

$$x = 2\cos(\theta)$$

$$y = 2 \operatorname{sen}(\theta)$$

$$\theta \in [0,2\pi)$$

Parametrização da metade superior

$$x = 2\cos(\theta)$$

$$y = 2 \operatorname{sen}(\theta)$$

$$\theta \in [0,\pi]$$

Essa parametrização começa em (2,0) e termina em (-2,0)

Queremos inverter o sentido em que percorremos a trajetória

$$x = 2\cos(\pi - \theta) = -2\cos(\theta)$$
$$y = 2\sin(\pi - \theta) = 2\sin(\theta)$$
$$\theta \in [0, \pi)$$

Conteúdo

Introdução

Curvas Paramétricas

Exemplos

Lista Mínima

Lista Mínima

Cálculo Vol. 2 do Thomas 12^a ed. – Seção 11.1

- 1. Estudar todo o texto da seção
- 2. Resolver os exercícios: 3, 5, 11, 19, 21, 23, 31

Atenção: A prova é baseada no livro, não nas apresentações