Vetores e Planos

Luis Alberto D'Afonseca

Cálculo de Funções de Várias Variáveis - I

Conteúdo

Vetores

Retas e Planos

Lista Mínima

Vetores em R^3

Segmento de reta orientado

Dois vetores são iguais se tem o mesmo comprimento e direção

Componentes

$$\mathbf{v} = \langle \nu_1, \nu_2, \nu_3 \rangle = (\nu_1, \nu_2, \nu_3)$$

Magnitude ou comprimento

$$|v| = \sqrt{\nu_1^2 + \nu_2^2 + \nu_3^2}$$

Vetor unitário

$$|v|=1$$

Produto Escalar

Produto escalar entre $u=\langle u_1,u_2,u_3\rangle$ e $v=\langle v_1,v_2,v_3\rangle$

$$u\cdot v=u_1v_1+u_2v_2+u_3v_3$$

Ângulo entre dois vetores

$$\cos(\theta) = \frac{u \cdot v}{|u||v|}$$

Vetores ortogonais

$$u \cdot v = 0$$

Conteúdo

Vetores

Retas e Planos

Lista Mínima

Retas

Equação vetorial para uma reta

$$r(t) = r_0 + tv$$
 $t \in \mathbb{R}$

Reta que passa pelo ponto $\ r_0=(x_0,y_0,z_0)\$ na direção do vetor $\
u=\langle \nu_1,\nu_2,\nu_3\rangle$

Equações paramétricas

$$x = x_0 + tv_1$$

$$y=y_0+tv_2$$

$$z=z_0+tv_3$$

Planos

Definimos um plano por um ponto, $P_0 = (x_0, y_0, z_0)$, e uma inclinação (vetor perpendicular), $n = \langle A, B, C \rangle$

$$P = (x, y, z)$$
 pertence ao plano se $n \cdot \overrightarrow{P_0 P} = 0$

$$\langle A, B, C \rangle \cdot \langle x - x_0, y - y_0, z - z_0 \rangle = 0$$

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$$

$$Ax + By + Cz = Ax_0 + By_0 + Cz_0$$

Conteúdo

Vetores

Retas e Planos

Lista Mínima

Lista Mínima

Cálculo Vol. 2 do Thomas 12^a ed.

1. Estudar o texto das Seções 12.2, 12.3, 12.5

Atenção: A prova é baseada no livro, não nas apresentações