Inexistência do Limite de Funções de Várias Variáveis

Luis Alberto D'Afonseca

Cálculo de Funções de Várias Variáveis - I

Motivação

Inexistência do Limite

Exemplos

Analise o limite de
$$f(x, y) = \frac{y}{x}$$
 quando (x, y) se aproxima de $(0, 0)$

A reta $x=0\,$ não faz parte do domínio de f

O ponto (0,0) não está no domínio de f

Não podemos usar as propriedades diretamente

Não existe manipulação que remova a indeterminação

Exemplo 1 – Solução

Calculando o limite f sobre a reta y = x

$$\lim_{(x,y)\to(0,0)} f(x,x) = \lim_{(x,y)\to(0,0)} \frac{y}{x} \bigg|_{y=x} = \lim_{x\to 0} \frac{x}{x} = 1$$

Calculando o limite f sobre a reta y = 0

$$\lim_{(x,y)\to(0,0)} f(x,0) = \lim_{(x,y)\to(0,0)} \frac{y}{x} \Big|_{y=0} = \lim_{x\to 0} \frac{0}{x} = 0$$

Exemplo 1 – Solução

Para qualquer $\delta>0$ dentro da bola de raio δ e centro em (0,0) sempre vai existir um ponto da forma (x,x) onde a função vale 1 e

Nenhum valor L atende as condições da definição de limite

um ponto da forma (x, 0) onde a função vale 0

O limite não existe

Motivação

Inexistência do Limite

Exemplos

Teste dos Dois Caminhos

Se f(x,y) tem limites diferentes ao longo de dois caminhos diferentes, no domínio de f, quando (x,y) se aproxima de (a,b), então

$$\lim_{(x,y)\to(a,b)} f(x,y)$$
 não existe

Motivação

Inexistência do Limite

Exemplos

Verifique a existência do limite
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$$

Exemplo 2 – Solução

Caminho y = x

$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}\bigg|_{y=x} = \lim_{x\to 0} \frac{xx}{x^2+x^2} = \lim_{x\to 0} \frac{x^2}{2x^2} = \lim_{x\to 0} \frac{1}{2} = \frac{1}{2}$$

Caminho y = -x

$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}\bigg|_{y=-x} = \lim_{x\to 0} \frac{x(-x)}{x^2+x^2} = \lim_{x\to 0} \frac{-x^2}{2x^2} = \lim_{x\to 0} \frac{-1}{2} = -\frac{1}{2}$$

Como os limites nos caminhos são diferentes, o limite não existe

Verifique se a função $f(x, y) = \frac{2x^2y}{x^4 + v^2}$ possui limite na origem.

O limite na origem leva a uma indeterminação do tipo $^0\!/_{\!0}$

Exemplo 3 – Solução

Fazendo y = mx, para $m \neq 0$ e $x \neq 0$, temos

$$f(x, mx) = \frac{2x^2y}{x^4 + y^2}\bigg|_{y=mx} = \frac{2mx^3}{x^4 + m^2x^2} = \frac{2mx x^2}{(x^2 + m^2) x^2} = \frac{2mx}{x^2 + m^2}$$

Calculando o limite $\,x \to 0\,$, que corresponde a $\,(x,y) \to (0,0)\,$

$$\lim_{x\to 0}\frac{2mx}{x^2+m^2} = \frac{0}{m^2} = 0 \qquad \forall m\neq 0$$

Portanto,
$$\lim_{(x,y)\to(0,0)} \frac{2x^2y}{x^4+y^2} = 0$$
 Falso!

Exemplo 3 – Solução

Fazendo $y = kx^2$, para $x \neq 0$, temos

$$f(x,kx^2) = \frac{2x^2y}{x^4 + y^2}\bigg|_{y=kx^2} = \frac{2kx^4}{x^4 + k^2x^4} = \frac{2kx^4}{(1+k^2)x^4} = \frac{2k}{1+k^2}$$

Calculando os limites até o ponto (0,0)

$$\left. \lim_{x \to 0} f(x, y) \right|_{y = kx^2} = \left. \lim_{x \to 0} \frac{2k}{1 + k^2} \right. = \left. \frac{2k}{1 + k^2} \right.$$

Para cada valor de k, a função f se aproxima da origem com um valor diferente

Portanto, o limite não existe

Mostre que o limite não existe

$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2 + y^4}$$

Exemplo 4 – Solução

Caminho $x = y^2$

$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^4}\bigg|_{x=y^2} = \lim_{y\to 0} \frac{y^2y^2}{y^4+y^4} = \lim_{y\to 0} \frac{y^4}{2y^4} = \lim_{y\to 0} \frac{1}{2} = \frac{1}{2}$$

Caminho x = 0

$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^4}\bigg|_{x=0} = \lim_{y\to 0} \frac{0\times y^2}{0+y^4} = \lim_{y\to 0} 0 = 0$$

Como os limites nos caminhos são diferentes, o limite não existe

Mostre que o limite
$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^4}$$
 não existe

Exemplo 5 – Solução

Caminho $x = y^2$

$$L_1 = \lim_{(x,y) \to (0,0)} \frac{xy^2}{x^2 + y^4} \bigg|_{x=y^2} = \lim_{y \to 0} \frac{y^2y^2}{y^4 + y^4} = \lim_{y \to 0} \frac{y^4}{2y^4} = \lim_{y \to 0} \frac{1}{2} = \frac{1}{2}$$

Caminho x = 0

$$L_2 = \lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2 + y^4} \bigg|_{x=0} = \lim_{y\to 0} \frac{0 \times y^2}{0 + y^4} = \lim_{y\to 0} \frac{0}{y^4} = \lim_{y\to 0} 0 = 0$$

Como
$$L_1 \neq L_2$$
, o limite $\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^4}$ não existe

Motivação

Inexistência do Limite

Exemplos

Lista Mínima

Cálculo Vol. 2 do Thomas 12^a ed. – Seção 14.2

- 1. Estudar o texto da seção
- 2. Resolver os exercícios: 41, 43, 45, 47

Atenção: A prova é baseada no livro, não nas apresentações