Séries Numéricas com Termos Gerais

Luis Alberto D'Afonseca

Integração e Séries

17 de agosto de 2025

Conteúdo

Séries Alternadas

Estimativa do Erro para Séries Alternadas

Convergência Absoluta

Exemplos

Lista Mínima

Séries Alternadas

Os termos trocam de sinal alternando entre um positivo e um negativo

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n$$

com $a_n > 0$ para todo n

Exemplo, Série Harmônica Alternada

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

Teste da Série Alternada – Teste de Leibniz

Seja a_n tal que, para todo $n \in \mathbb{N}$,

1.
$$a_n > 0$$

 a_n são os módulos dos termos da série

2.
$$a_n \geq a_{n+1}$$

os termos são decrescentes em módulo

3.
$$a_n \rightarrow 0$$

os termos tendem a zero

Então, a série alternada
$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n$$
 converge

Vamos analisar a série

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{2^{n-1}}$$

Percebemos que

- ▶ a série é alternada
- o módulo do termo geral é $a_n = \frac{1}{2^{n-1}}$
- $ightharpoonup a_n \geq a_{n+1}$
- $ightharpoonup a_n o 0$

Portanto a série converge pelo Teste da Série Alternada

Por outro lado

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{2^{n-1}} = \sum_{n=1}^{\infty} \frac{(-1)^2 (-1)^{n-1}}{2^{n-1}} = \sum_{n=1}^{\infty} \left(-\frac{1}{2} \right)^{n-1}$$

Série geométrica com a = 1 e $r = -\frac{1}{2}$

Como |r| < 1 ela converge

sua soma é
$$S = \frac{a}{1-r} = \frac{1}{1+1/2} = \frac{2}{3}$$

Conteúdo

Séries Alternadas

Estimativa do Erro para Séries Alternadas

Convergência Absoluta

Exemplos

Lista Mínima

Estimativa do Erro

Dada uma série que satisfaz as condições do teste da série alternada

$$S_n = a_1 - a_2 + a_3 - a_4 + \cdots + (-1)^{n+1}a_n$$

converge para a soma da série S

- $|R_n| < a_{n+1}$
- \triangleright *S* está entre S_n e S_{n+1}
- $ightharpoonup R_n = S S_n$ tem o mesmo sinal do primeiro termo não utilizado

Conteúdo

Séries Alternadas

Estimativa do Erro para Séries Alternadas

Convergência Absoluta

Exemplos

Lista Mínima

Convergência Absoluta

Uma série
$$\sum_{n=1}^{\infty} a_n$$

converge absolutamente, ou é absolutamente convergente,

se
$$\sum_{n=1}^{\infty} |a_n|$$
 converge

Convergência Condicional

Se
$$\sum_{n=1}^{\infty} a_n$$
 converge mas $\sum_{n=1}^{\infty} |a_n|$ diverge

a série é condicionalmente convergente

Exemplo: Série Harmônica Alternada

Teste da Convergência Absoluta

Uma série absolutamente convergente é convergente.

Séries com termos não negativos e convergentes são absolutamente convergentes

Teorema do Rearranjo

Se
$$\sum_{n=1}^{\infty} a_n$$
 converge absolutamente

dado qualquer rearranjo (b_k) da sequência (a_n)

a série $\sum b_k$ converge e

$$\sum_{k=1}^{\infty}b_k=\sum_{n=1}^{\infty}a_n$$

Conteúdo

Séries Alternadas

Estimativa do Erro para Séries Alternadas

Convergência Absoluta

Exemplos

Lista Mínima

Use o Teste de Leibniz para mostrar que a série a seguir converge

$$\sum_{n=1}^{\infty} (-1)^n \ln \left(1 + \frac{1}{n}\right)$$

Exemplo 2 – Condição 1: $a_n > 0$

Como
$$1 + \frac{1}{n} > 1$$
 para todo $n \ge 1$

Podemos escolher

$$a_n = \ln\left(1 + \frac{1}{n}\right)$$

que garante $a_n > 0$

Exemplo 2 – Condição 2: $a_n \ge a_{n+1}$

Considerando a função

$$f(x) = \ln\left(1 + \frac{1}{x}\right) = \ln\left(1 + x^{-1}\right)$$

temos

$$f'(x) = \frac{1}{1+x^{-1}} \left(-x^{-2}\right) = \frac{-1}{\left(1+x^{-1}\right)x^2} = \frac{-1}{x^2+x} < 0 \qquad \forall x \ge 1$$

Portanto a_n é decrescente $a_n > a_{n+1}$

Exemplo 2 – Condição 3: $a_n \to 0$

Observando que

$$\lim_{n\to\infty}1+\frac{1}{n}=1$$

e a função ln(x) é contínua em 1

$$\lim a_n = \lim \ln \left(1 + \frac{1}{n}\right) = \ln \lim \left(1 + \frac{1}{n}\right) = \ln 1 = 0$$

O Teste de Leibniz garante que a série converge

Use o Teste de Leibniz para mostrar que a série a seguir converge

$$\sum_{n=2}^{\infty} (-1)^{n+1} \frac{4}{(\ln n)^2}$$

Exemplo 3 – Condição 1: $a_n > 0$

Vemos que
$$\,a_n=rac{4}{(\ln n)^2}>0\,$$
 para todo $\,n\geq 2\,$

Exemplo 3 – Condição 2: $a_n \ge a_{n+1}$

Como $\ln n$ é crescente,

$$a_n = \frac{4}{(\ln n)^2}$$

é decrescente

Exemplo 3 – Condição 3: $a_n \to 0$

$$a_n o 0$$
, pois $\left(\ln n\right)^2 o \infty$

O teste de Leibniz garante que a série converge

Use o teste de Leibniz para mostrar que a série a seguir converge

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{10^n}{(n+1)!}$$

Exemplo 4 – Condição 1: $a_n > 0$

$$a_n = \frac{10^n}{(n+1)!}$$
 é positivo para $n \ge 1$

Exemplo 4 – Condição 2: $a_n \ge a_{n+1}$

$$n \geq 8$$
 $n+2 \geq 10$ $1 \geq \frac{10}{n+2}$

$$a_{n+1} = \frac{10^{n+1}}{(n+2)!}$$

$$= \frac{10}{(n+2)} \frac{10^n}{(n+1)!}$$

$$\leq \frac{10^n}{(n+1)!}$$

$$= a_n$$

Portanto, a_n é decrescente para $n \ge 8$

Exemplo 4 – Condição 3: $a_n \to 0$

Para n > 10

$$(n+1)! = 1 \times 2 \times \cdots \times 9 \times 10 \times 11 \times \cdots \times n \times (n+1)$$

$$\geq 10! \ 10^{n-10} (n+1)$$

Dessa forma

$$rac{10^n}{(n+1)!} \leq rac{10^n}{10! \; 10^{n-10} \, (n+1)} = rac{10^{10}}{10!} \, rac{1}{(n+1)}
ightarrow 0$$

Como
$$0 < \frac{10^n}{(n+1)!} \le \frac{10^{10}}{10!} \frac{1}{(n+1)!}$$

o Teorema do Confronto garante que $a_n \to 0$

O teste de Leibniz garante que a série converge

Estime o erro cometido quando aproximamos o valor da soma da série

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$

pela soma dos seus quatro primeiros termos

A série converge pelo teste da série alternada, portanto

$$|R_n| < a_{n+1}$$

Como somamos quatro quatro termos (S_4), temos que

$$|R_4| < a_5 = \frac{1}{5}$$

Determine quantos termos devem ser somados para aproximar a soma da série

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2+3}$$

com erro menor do que 0,0001

A série converge pelo teste da série alternada, portanto

$$|R_n| < a_{n+1}$$

Para garantir que o erro é menor do que 0,001 devemos impor que

$$a_{n+1} < 10^{-4}$$
 $n^2 > 10^4 - 3$ $\frac{1}{n^2 + 3} < 10^{-4}$ $n^2 > 10^4$ $n^2 > 10^4$ $n > 10^2$

Conteúdo

Séries Alternadas

Estimativa do Erro para Séries Alternadas

Convergência Absoluta

Exemplos

Lista Mínima

Lista Mínima

Estudar a Seção ? da Apostila

Exercícios:

Atenção: A prova é baseada no livro, não nas apresentações